WNA Worldwide Overview on Front-End Nuclear Fuel Cycle's

Growth (Supply and Demand)

Sylvain Saint-Pierre Director for Environment and Radiological Protection World Nuclear Association URAM-2009 Vienna, Austria June 22-26, 2009

World Nuclear Association - WNA

The trade association of the global nuclear industry with a worldwide membership

- Based in London, UK
- WNA: http://www.world-nuclear.org
- WNN: http://www.world-nuclear-news.org

Our membership makes us unique, global and truly representative

- Over 180 industry enterprises from over 30 countries
- Over 90% of world uranium production and nuclear power generation

PART I

OVERVIEW OF FRONT-END NUCLEAR FUEL CYCLE'S:

World Uranium and Nuclear Power

World Reference : WNA's Market Report

Considers **3** scenarios approach to nuclear power demand (2007-2030):

- Reference case
- Upper case
- Lower case

Generic assumptions underlie each scenario on:

- nuclear economics
- public acceptance

• impact of climate change debate and electricity market structure

Nuclear power capacity to 2030, GWe net 2007 Market Report

Nuclear power capacity to 2030, GWe net 2009 Market Report draft

URANIUM MINING:

Distribution of Uranium resources

Low cost (<\$80/kg) uranium reserves, thousand tonnes U

Australia	714		
Kazakhstan	344		
Canada	329		
South Africa	206		
Russia	172		
Brazil	157		
Namibia	145		
Ukraine	127		
USA	99		
Others	155		
Total	2438 tU		
Source: Red Book			
Page 12			

World Uranium production 2008, tU

Canada	9000
Kazakhstan	8521
Australia	8430
Namibia	4366
Russia	3521
Niger	3032
Uzbekistan	2338
USA	1430
Others	3292
Total	43930 t

U requirements to 2030, tU 2007 Market Report

Uranium requirements to 2030, tU - 2009 Market Report draft

Implied need for primary uranium production - requirements less secondary supplies

Uranium Mining Outlook

- 1. U market has sound supply up to 2015-20 but meeting demand becomes likely more challenging thereafter
- 2. Primary U supply (mining) needs to rise sharply to meet rising market demand
 - Canada and Australia will expand, key increases from Kazakhstan, new producing countries in Africa
- 3. In-situ leach (ISL) will represent a greater share but conventional mining is to remain dominant
- 4. Secondary supplies will remain important:
 Ex-military material, commercial inventories, MOX-RepU

URANIUM CONVERSION: GROWTH

Conversion - Basics

Enrichment for light water reactors (PWR) requires conversion to UF₆ - [Serves 90% of all nuclear reactors]

CANDU reactors require direct conversion to UO₂

5 major UF₆ conversion suppliers - Cameco, Springfields, Comurhex, ConverDyn and Rosatom

UO₂ conversion by Cameco and domestic suppliers in Argentina, China, India and Romania

UF₆ conversion requirements to 2030, tU

Uranium Conversion Outlook

1. UF₆ conversion will expand to cope with rising demand

• Replacement of present plant in France, and expansion of facilities elsewhere

2. Small-scale UO2 conversion facilities may continue in a few countries but Cameco will remain dominant

3. World UF₆ conversion demand will rise steadily in line with overall U requirements

URANIUM ENRICHMENT: GROWTH

Enrichment - Basics

U-235 is enriched from 0.71% (natural) to 3-5% (typical): [Such fuel is needed for 90% of power reactors]

2 main technologies - older gaseous diffusion and more recent centrifuges

Investment in laser enrichment so far remains unrewarded by commercial application

Note: Effort to enrich measured in Separative Work Units (SWUs)

Enrichment - Supply

4 large suppliers of primary enrichment services - USEC (USA), Areva (France), Urenco (Western Europe) and Rosatom (Russia)

USEC and Areva use gas diffusion, Urenco and Rosatom use centrifuges

JNFL (Japan) and CNNC (China) also primary suppliers

Heavy current investment in new centrifuge plants by USEC, Areva and Urenco in USA and by Areva in France

Enrichment requirements to 2030

Uranium Enrichment Outlook

- 1. The key change is the gradual replacement of older gas diffusion plants (France, USA) by gas centrifuge plants
- 2. Elsewhere, Western Europe and Russia will likely expand their centrifuge capacity

3. Investors in the SILEX laser technology will try to commercialise it within the next 5 years

Overall Outlook on NFC Front-End Growth

U Mining

Sound growth until 2015-2020. Becomes challenging thereafter

U Conversion

Sound growth with rising demand

U Enrichment

Sound growth with rising demand. Technology change

Thank you for your attention Questions?

saintpierre@world-nuclear.org

Page 27